Abstract

OBJECTIVESWe analyzed the regulatory function of reactive oxygen species (ROS) on the hypertrophic signaling in adult rat cardiac myocytes.BACKGROUNDThe ROS regulate mitogenic signal transduction in various cell types. In neonatal rat cardiac myocyte, antioxidants have been shown to inhibit cardiac hypertrophy, and ROS are suggested to modulate the hypertrophic signaling. However, the conclusion may not reflect the situation of mature heart, because of the different natures between neonatal and adult cardiac myocytes.METHODSCultured adult rat cardiac myocytes were stimulated with endothelin-1 (ET-1) or phenylephrine (PE), and intracellular ROS levels, the activities of mitogen-activated protein kinases (MAPKs; ERK, p38, and JNK), and 3H-phenylalanine incorporation were examined. We also examined the effects of antioxidant pretreatment of myocytes on MAPK activities and cardiac hypertrophy to analyze the modulatory function of redox state on MAPK-mediated hypertrophic signaling.RESULTSThe ROS levels in ET-1- or PE-stimulated myocytes were maximally increased at 5 min after stimulation. The origin of ROS appears to be from NADH/NADPH oxidase, because the increase in ROS was suppressed by pretreatment of myocytes with NADH/NADPH oxidase inhibitor diphenyleneiodonium. Extracellular signal-regulated kinase (ERK) activity was increased by the stimulation of ET-1 or PE. In contrast, p38 and c-Jun-N-terminal protein kinase (JNK) activities did not change after these stimulations. Antioxidant treatment of myocytes suppressed the increase in ROS and blocked ERK activation and the subsequent cardiac hypertrophy induced by these stimuli.CONCLUSIONSThese data demonstrate that ROS mediate signal transduction of cardiac hypertrophy induced by ET-1 or PE in adult rat cardiac myocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call