Abstract

Morphology-transformational self-assembly of peptides allows for manipulation of the performance of nanostructures and thereby advancing the development of biomaterials. Acceleration of the morphological transformation process under a biological microenvironment is important to efficiently implement the tailored functions in living systems. Herein, we report redox-regulated in situ seed-induced assembly of peptides via design of two co-assembled bola-amphiphiles serving as a redox-resistant seed and a redox-responsive assembly monomer, respectively. Both of the peptides are able to independently assemble into nanoribbons, while the seed monomer exhibits stronger assembling propensity. The redox-responsive monomer undergoes morphological transformation from well-defined nanoribbons to nanoparticles. Kinetics studies validate the role of the assembled inert monomer as the seeds in accelerating the assembly of the redox-responsive monomer. Alternative addition of oxidants and reductants into the co-assembled monomers promotes the redox-regulated assembly of the peptides facilitated by the in situ-formed seeds. The reduction-induced assembly of the peptide could also be accelerated by in situ-formed seeds in cancer cells with a high level of reductants. Our findings demonstrate that through precisely manipulating the assembling propensity of co-assembled monomers, the in situ seed-induced assembly of peptides could be achieved. Combining the rapid assembly kinetics of the seed-induced assembly with the common presence of redox agents in a biological microenvironment, this strategy potentially offers a new method for developing biomedical materials in living systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.