Abstract

Little is known about transient intermediates in photoinduced electron-transfer reactions of metalloproteins. Oxidative quenching of the triplet state of zinc cytochrome c, 3Zncyt, is done at 20 degrees C, pH 7.00, and ionic strength of 1.00 M, conditions that suppress the thermal back-reaction and prolong the lifetime of the cation radical, Zncyt+. This species is reduced by [Fe(CN)6]4-, [W(CN)8]4-, [Os(CN)6]4-, [Mo(CN)8]4-, and [Ru(CN)6]4- complexes of similar structures and the same charge. The rate constants and thermodynamic driving forces for these five similar electron-transfer reactions were fitted to Marcus theory. The reorganization energy of Zncyt+ is lambda = 0.38(5) eV, lower than that of native cytochrome c, because the redox orbital of the porphyrin cation radical is delocalized and possibly because Met80 is not an axial ligand to the zinc(II) ion in the reconstituted cytochrome c. The rate constant for electron self-exchange between Zncyt+ and Zncyt, k11 = 1.0(5) x 10(7) M(-1) s(-1), is large owing to the extended electron delocalization and relatively low reorganization energy. These results may be relevant to zinc(II) derivatives of other heme proteins, which are often used in studies of photoinduced electron-transfer reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.