Abstract
It is well-known that reductive electropolymerization of cyanopyridinium moieties yields to viologenic materials. In this work, a monomer with two electropolymerizable cyanopyridinium groups separated by a six carbon spacer (CNP) has been synthesized. Its electropolymerization in aqueous electrolyte results in a linear polyviologen (PV) derivative, a purple-colored film deposited on the electrode surface. Cyclic voltammetry (CV) of PV films displays two well-resolved one-electron redox processes at c.a. −0.5 and −1.0 V vs. Ag/AgCl. Fourier transform infrared (FTIR) spectral analysis shows successful polymerization of PV from the CNP monomer. In situ electron spin resonance (ESR)/UV-vis-NIR spectroelectrochemistry was used in order to simultaneously determine the polycation radical as well as the magnetic and optical response of the redox PV system. The single-line ESR spectrum observed at the first reduction peak of PV film was assigned to the formation of stable viologen cation radical species within the polymer matrix, exhibiting the characteristic UV-vis-NIR viologen cation radical absorption bands. The electrosynthesized linear PV system represents a promising stable redox active n-type material for organic rechargeable devices.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.