Abstract
Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid, the phosphonic analog of 3,4-dihydroxyphenylglycine, had been previously reported as a potent inhibitor of tyrosinase. The mechanism of the apparent enzyme inhibition by this compound has now been established. Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid turned out to be a substrate and was oxidized to o-quinone, which evolved to a final product identified as 3,4-dihydroxybenzaldehyde, the same as for 3,4-dihydroxyphenylglycine. Monohydroxylated compounds (amino-(3-hydroxyphenyl)methyl phosphonic acid and amino-(4-hydroxyphenyl)methyl phosphonic acid) were not oxidized, neither was 4-hydroxy-l-phenylglycine. However, the relatively high Km for amino-(3,4-dihydroxyphenyl)methyl phosphonic acid (0.52 mm) indicated that competitive inhibition could not entirely explain the previously reported strong inhibitory effect (Ki = 50 and 97 micro m for tyrosine and 3-(3,4-dihydroxyphenyl)alanine (Dopa) as substrates, respectively). Neither was the enzyme covalently inactivated to a significant degree. Spectroscopic and electrochemical analysis of the oxidation of a mixture of Dopa and the inhibitor demonstrated that the phosphonic compound reduced dopaquinone back to Dopa, thus diminishing and delaying the formation of dopachrome. This produces an apparent strong inhibitory effect when the reaction is monitored spectrophotometrically at 475 nm. In this peculiar case Dopa acts as a redox shuttle mediating the oxidation of the shorter phosphonic homolog. Decomposition of the phosphonic o-quinone to 3,4-dihydroxybenzaldehyde drives the reaction against the slightly unfavorable difference in redox potentials.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.