Abstract
The redox properties of two large DNA fragments composed of 39 base pairs, differing only by an 8-oxoguanine (8oxoG) defect replacing a guanine (G), were investigated in physiological conditions using mixed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. The quantum region of the native fragment comprised 3 G-C base pairs, while one G was replaced by an 8oxoG in the defect fragment. The calculated values for the redox free energy are 6.55 ± 0.28 eV and 5.62 ± 0.30 eV for the native and the 8oxoG-containing fragment, respectively. The respective estimates for the reorganization free energy are 1.25 ± 0.18 eV and 1.00 ± 0.18 eV. Both reactions follow the Marcus theory for electron transfer. The large difference in redox potential between the two fragments shows that replacement of a G by an 8oxoG renders the DNA more easily oxidizable. This finding is in agreement with the suggestion that DNA fragments containing an 8oxoG defect can act as sinks of oxidative damage that protect the rest of the genome from assault. In addition, the difference in redox potential between the native and the defect DNA fragment indicates that a charge transfer-based mechanism for the recognition of DNA defects might be feasible, in line with recent suggestions based on experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.