Abstract
The biogeochemical processes controlling the speciation and transport of manganese in a Colorado mountain stream were studied using a conservative tracer approach combined with laboratory experiments. The study stream, Lake Fork Creek, receives manganese-rich inflows from a wetland contaminated by acid mine drainage. A conservative tracer experiment was conducted on a 1300-m reach of the stream. Results indicate that manganese was progressively removed from the stream, resulting in a loss of 64 +/- 17 micromol day(-1) m(-1). Laboratory experiments using streamwater, mine effluent, and rocks from the stream showed the importance of surface-catalyzed oxidation and photoreduction on the speciation of manganese. The field and modeling results indicate that light generally promotes oxidation and removal of manganese from the stream, presumably through a photosynthetically enhanced oxidation process. Differences in Mn speciation within the stream suggest that reductive processes affect Mn speciation within the water column. These results identify the rapid oxidation and precipitation of MnOx as a dominant process within this freshwater stream.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.