Abstract

Quinones serve as redox active cofactors in bacterial photosynthetic reaction centers: photosystem I, photosystem II, cytochrome bc1, and cytochrome b6f. In particular, ubiquinone is ubiquitous in animals and most bacteria and plays a key role in several cellular processes, e.g., mitochondrial electron transport. Their experimentally measured redox potential values for one-electron reduction Em(Q/Q·−) were already reported in dimethylformamide (DMF) versus saturated calomel electrode but not in water versus normal hydrogen electrode (NHE). We calculated Em(Q/Q·−) of 1,4-quinones using a quantum chemical approach. The calculated energy differences of reduction of Q to Q·− in DMF and water for 1,4-quinone derivatives correlated highly with the experimentally measured Em(Q/Q·−) in DMF and water, respectively. Em(Q/Q·−) were calculated to be −163 mV for ubiquinone, −260 mV for menaquinone and phylloquinone, and −154 mV for plastoquinone in water versus NHE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.