Abstract

Trifluoromethylation reactions are important transformations in the research and development of drugs, agrochemicals and functional materials. An oxidation/reduction process of trifluoromethyl-containing compounds is thought to be involved in many recently tested catalytic trifluoromethylation reactions. To provide helpful physical chemical data for mechanistic studies on trifluoromethylation reactions, the redox potentials of a variety of trifluoromethyl-containing compounds and trifluoromethylated radicals were studied by quantum-chemical methods. First, ωB97X-D was found to be a reliable method in predicting the ionization potentials, electron affinities, bond dissociation enthalpies and redox potentials of trifluoromethyl- containing compounds. One-electron absolute redox potentials of 79 trifluoromethyl substrates and 107 trifluoromethylated radicals in acetonitrile were then calculated with this method. The theoretical results were found to be helpful for interpreting experimental observations such as the relative reaction efficiency of different trifluoromethylation reagents. Finally, the bond dissociation free energies (BDFE) of various compounds were found to have a good linear relationship with the related bond dissociation enthalpies (BDE). Based on this observation, a convenient method was proposed to predict one-electron redox potentials of neutral molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call