Abstract

ABSTRACTPressure oxidation (POX) leaching has been commercially applied to refractory gold ores since the 1980s. In the process, sulphide material is oxidised and dissolved in order to release the gold encapsulated in the sulphide matrix, making the gold available for further recovery. Redox potential is a significant parameter during POX; however, it is measured ex situ only at atmospheric conditions. In situ redox potential measurement would provide instant information that allows adjusting the process parameters accordingly. In the present study, redox potential measurements were performed during POX of sulphide material at high temperatures and high pressures. The working electrode was an Ir electrode combined with a flow-through reference electrode in a novel and robust configuration. Experiments were performed in a 2 L titanium autoclave, at 200–220°C, 345–760 kPa oxygen overpressure, and 10–30% solids mass fraction. Temperature and oxygen pressure conditions were selected in order to reflect POX of refractory gold ores. Results show that the Ir electrode is consistent with theory and is able to perform well under these conditions, showing promise as a new in situ sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.