Abstract

We describe a novel surface enhanced Raman spectroscopy (SERS) sensing approach utilizing modified gold nanoshells and demonstrate its application to analysis of critical redox-potential dependent changes in antigen structure that are implicated in the initiation of a human autoimmune disease. In Goodpasture's disease, an autoimmune reaction is thought to arise from incomplete proteolysis of the autoantigen, α3(IV)NC1(67-85) by proteases including Cathepsin D. We have used SERS to study conformational changes in the antigen that correlate with its oxidation state and to show that the antigen must be in the reduced state in order to undergo proteolysis. Our results demonstrate that a redox potential of ∼-200 mV was sufficient for reduction and subsequent productive processing of the antigenic fragment α3(IV)NC1(67-85). Moreover, we demonstrate that the peptide bonds subsequently cleaved by Cathepsisn D can be identified by comparison with a SERS library of short synthetic peptides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.