Abstract

The asymmetric reduction of double bonds using NAD(P)H-dependent oxidoreductases has proven to be an efficient tool for the synthesis of important chiral molecules in research and on industrial scale. These enzymes are commercially available in screening kits for the reduction of C=O (ketones), C=C (activated alkenes), or C=N bonds (imines). Recent reports, however, indicate that the ability to accommodate multiple reductase activities on distinct C=X bonds occurs in different enzyme classes, either natively or after mutagenesis. This challenges the common perception of highly selective oxidoreductases for one type of electrophilic substrate. Consideration of this underexplored potential in enzyme screenings and protein engineering campaigns may contribute to the identification of complementary biocatalytic processes for the synthesis of chiral compounds. This review will contribute to a global understanding of the promiscuous behavior of NAD(P)H-dependent oxidoreductases on C=X bond reduction and inspire future discoveries with respect to unconventional biocatalytic routes in asymmetric synthesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.