Abstract

Density functional theory (DFT) calculations at the TPSSh-D3(BJ)/def2-TZVP (SMD, water) level of theory were performed to understand the mechanism of redox-neutral depolymerization of four types of lignin-derived aryl ether dimers catalyzed by rhodium-terpyridine ([Rh]) and a binuclear Rh complex ([2Rh]). The cleavage of the Cβ-O bond in the β-O-4 model compound was initiated by the dehydrogenation of the alcohol moiety into a ketone intermediate, followed by the reductive cleavage of the ether bond, producing phenol and aromatic ketone products. The [Rh]-OH intermediate, generated by the interaction between the Rh-complex and NaOH, facilitated the transformation of the alcohol group to a CO group in the lignin model compound and subsequent H-transfer, selectively forming rhodium-H active species and the ketone intermediate. The [2Rh]-H complex exhibited high reactivity, with energy barriers for a rate-determining Cβ-O bond breakage of 35.3 kcal mol-1. In contrast to 1-phenylethan-1-ol and H2, lignin itself acted as a good hydrogen source to generate [Rh]-H species. The transformation of β-O-4 model compounds with the γ-OH group occurred via the elimination of the γ-OH group, reduction of the CC bond, and Cβ-O bond cleavage steps. However, since lignin itself was unable to supply enough hydrogen to form [Rh]-H species, the aromatic products were obtained in low yields, as observed in the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.