Abstract

In the cells' nuclei, high-mobility group box protein 1 (HMGB1) is a nonhistone chromatin-binding protein involved in the regulation of transcription. Extracellularly, HMGB1 acts as a danger molecule with properties of a proinflammatory cytokine. It can be actively secreted from myeloid cells or passively leak from any type of injured, necrotic cell. Increased serum levels of active HMGB1 are often found in pathogenic inflammatory conditions and correlate with worse prognoses in cancer, sepsis, and autoimmunity. By damaging cells, superoxide and peroxynitrite promote leakage of HMGB1. The activity of HMGB1 strongly depends on its redox state: Inflammatory-active HMGB1 requires an intramolecular disulfide bond (Cys23 and Cys45) and a reduced Cys106. Oxidation of the latter blocks its stimulatory activity and promotes immune tolerance. Reactive oxygen and nitrogen species create an oxidative environment and can be detoxified by superoxide dismutase (SOD), catalase, and peroxidases. Modifications of the oxidative environment influence HMGB1 activity. In this review, we hypothesize that manipulations of an oxidative environment by SOD mimics or by hydrogen sulfide are prone to decrease tissue damage. Both the concomitant decreased HMGB1 release and its redox chemical modifications ameliorate inflammation and tissue damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.