Abstract

The cyclic AMP-dependent protein kinase (PKA) plays an essential role in the regulation of many important cellular processes and is dysregulated in several pervasive diseases, including diabetes, cardiovascular disease, and various neurodegenerative disorders. Previous studies suggest that the alpha isoform of the catalytic subunit of PKA (PKA-Cα) is oxidized on C199, both in vitro and in situ. However, the molecular consequences of these modifications on PKA-Cα's substrate selection remain largely unexplored. C199 is located on the P + 1 loop within PKA-Cα's active site, suggesting that redox modification may affect its kinase activity. Given the proximity of C199 to the substrate binding pocket, we hypothesized that oxidation could differentially alter PKA-Cα's activity toward its substrates. To this end, we examined the effects of diamide- and H2O2-dependent oxidation on PKA-Cα's activity toward select peptide and protein substrates using a combination of biochemical (i.e., trans-phosphorylation assays and steady-state kinetics analysis) and biophysical (i.e., surface plasmon resonance and fluorescence polarization assays) strategies. These studies suggest that redox modification of PKA-Cα differentially affects its activity toward different substrates. For instance, we found that diamide-mediated oxidation caused a marked decrease in PKA-Cα's activity toward some substrates (e.g., Kemptide and CREBtide) while having little effect on others (e.g., Crosstide). In contrast, H2O2-dependent oxidation of PKA-Cα led to an increase in its activity toward each of the substrates at relatively low H2O2 concentrations, with differential effects at higher peroxide concentrations. Together, these studies offer novel insights into crosstalk between redox- and phosphorylation-dependent signaling pathways mediated by PKA. Likewise, since C199 is highly conserved among AGC kinase family members, they also lay the foundation for future studies designed to elucidate the role of redox-dependent modification of kinase substrate selection in physiological and pathological states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.