Abstract

Tryparedoxins (TXNs) are multipurpose oxidoreductases from trypanosomatids that transfer reducing equivalents from trypanothione to various thiol proteins. In Trypanosoma cruzi, two genes coding for TXN-like proteins have been identified: TXNI, previously characterized as a cytoplasmic protein, and TXNII, a putative tail-anchored membrane protein. In this work, we performed a comparative functional characterization of T. cruzi TXNs. Particularly, we cloned the gene region coding for the soluble version of TXNII for its heterologous expression. The truncated recombinant protein (without its 22 C-terminal transmembrane amino acids) showed TXN activity. It was also able to transfer reducing equivalents from trypanothione, glutathione, or dihydrolipoamide to various acceptors, including methionine sulfoxide reductases and peroxiredoxins. The results support the occurrence and functionality of a second tryparedoxin, which appears as a new component in the redox scenario for T. cruzi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.