Abstract

Widely recognized as a promising approach to degrading recalcitrant pollutants, Advanced Oxidation Processes (AOPs) have drawn much attention for their effectiveness and efficiency. Among all the AOPs, the Fenton system has been widely applied for oxidation and mineralization of micropollutants due to its ease of implementation and high catalytic efficiency. However, the necessity of preceding acidification, together with rapid consumption and slow regeneration of Fe(II) resulting in deterioration of reactivity, has reduced its competitiveness as a practical option for water treatment. Acknowledging the above drawbacks, this study investigates the potential viable option to enhance the Fenton system. Acesulfame was chosen as the model compound due to its ubiquitous occurrence and persistence in the environment. UV-assisted photo-Fenton treatment was found to remove the parent compound effectively; the transformation profile of acesulfame was identified and elucidated with the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Prolonged UV photo-Fenton treatment was effective for mineralization of the majority of the transformation products, without increasing the overall toxicity as indicated by Vibrio fischeri bioluminescence assay. The positive effects of the addition of redox mediators to Fenton systems at neutral pH were confirmed in this study. The results could be the basis for further development of homogeneous catalytic degradation techniques for the oxidation of environmental contaminants at circumneutral pHs to neutral pHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call