Abstract

The present work assessed some engineering approaches, such as the addition of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (50 and 100 μM), microaeration (1 mL air min−1), and nitrate (100−400 mg L−1), for enhancing the biotransformation of the antibiotics sulfamethoxazole (SMX) and trimethoprim (TMP) (200 μg L−1 each) in anaerobic reactors operated at a short hydraulic retention time (7.4 h). Initially, very low removal efficiencies (REs) of SMX and TMP were obtained under anaerobic conditions (∼6%). After adding AQDS, the anaerobic biotransformation of these antibiotics significantly improved, with an increase of approximately 70% in the REs with 100 μM of AQDS. Microaeration also enhanced the biotransformation of SMX and TMP, especially when associated with AQDS, which provided REs above 70%, particularly for TMP (∼91% with 1 mL air min−1 and 50 μM of AQDS). Concerning nitrate, the higher the added concentration, the higher the REs of the antibiotics (∼86% with 400 mg L−1). Therefore, all the assessed approaches were demonstrated to be very effective in improving the limited biotransformation of SMX and TMP in anaerobic reactors, ensuring REs comparable to those found in higher-cost wastewater treatment technologies, such as conventional activated sludge, membrane bioreactors, and hybrid processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call