Abstract

Rechargeable Li-CO2 batteries as a novel system developed in recent years directly use CO2 as the reactant, which enables deeper penetration of energy storage and CO2 utilization. The Li-CO2 battery system, however, is at an early stage, and many challenges remained to be overcome urgently, especially the problem of high over-potential during the charging process. Here, we report a redox mediator, phenoxathiin, to assist the decomposition of Li2CO3 during the charging process, which effectively reduces the over-potential and improves the cycling performance of the battery. Furthermore, we detect the presence of singlet oxygen during the oxidation of Li2CO3 by phenoxathiin, which reveals more of the underlying science of the reaction mechanism of the Li-CO2 battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.