Abstract

We report the isolation and characterization of a series of trinickel complexes with 2,3,6,7,10,11-hexaoxytriphenylene (HOTP), [(Me3 TPANi)3 (HOTP)](BF4 )n (Me3 TPA=N,N,N-tris[(6-methyl-2-pyridyl)methyl]amine) (n=2, 3, 4 for complexes 1, 2, 3). These complexes comprise a redox ladder whereby the HOTP core displays increasingly quinoidal character as its formal oxidation state changes from -4, to -3, and -2 in 1, 2, and 3, respectively. No formal oxidation state changes occur on Ni, allowing the isolation of singlet diradical, monoradical, and closed-shell configurations for HOTP in 1, 2, and 3, respectively, with a concomitant decrease in the spin coupling strength upon oxidation. Because the three complexes can be considered models of the smallest building blocks of 2D conductive metal-organic frameworks such as Ni9 HOTP4 , these results serve as possible inspiration for the construction of extended materials with targeted electric and magnetic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.