Abstract

Mechanical integrity and damage tolerance represent two key challenges in the design of solid oxide fuel cells (SOFCs). In particular, reduction and oxidation (redox) cycles, and the associated large transformation strains have a notable impact on the mechanical stability and failure mode of SOFC anodes. In this study, the deformation behavior under redox cycling is investigated computationally with an approach that provides a detailed, microstructurally based view of heterogeneous damage accumulation behavior within an experimentally obtained nickel/yttria stabilized zirconia SOFC anode microstructure. Simulation results underscore the critical role that the microstructure plays in the mechanical deformation behavior of and failure within such materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.