Abstract

AbstractDiaryliodonium salts undergo facile reduction by the dialkylborane, 9‐BBN. The combination of these two reagents constitutes a redox couple that can be employed as a convenient and versatile initiator system for the cationic polymerizations of styrenic monomers, vinyl ethers and the ring‐opening polymerizations of cyclic ethers and acetals including; epoxides, oxetanes, tetrahydrofuran, and 1,3,5‐trioxane. The polymerizations of these monomers can be carried out in either neat monomer or under solution conditions. Typically, the redox cationic polymerizations of the above monomers are rapid and exothermic. Optical pyrometry (infrared thermography) was employed as a convenient method with which to monitor and optimize the aforementioned redox initiated cationic polymerizations. Studies of the effects of variations in the structure and concentrations of the diaryliodonium salt and 9‐BBN on the polymerizations of various monomers were carried out. A mechanism for the redox cationic initiation of the polymerizations was proposed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5639–5651, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.