Abstract

This work presents the design and optimization of amperometric biosensors for the determination of biogenic amines (e.g., histamine, putrescine, cadaverine, tyramine, cystamine, agmatine, spermidine), commonly present in food products, and their application for monitoring of freshness in fish samples. The biosensors were used as the working electrodes of a three-electrode electrochemical cell of wall-jet type, operated at -50 mV vs Ag/AgCl, in a flow injection system. Two different bienzyme electrode designs were considered, one based on the two enzymes [a newly isolated and purified amine oxidase (AO) and horseradish peroxidase (HRP)] simply adsorbed onto graphite electrodes, and one when they were cross-linked to an Os-based redox polymer. The redox hydrogel-based biosensors showed better biosensors characteristics, i.e., sensitivity of 0.194 A M-1 cm-2 for putrescine and 0.073 A M-1 cm-2 for histamine, and detection limits (calculated as three times the signal-to-noise ratio) of 0.17 microM for putrescine and 0.33 microM for histamine. The optimized redox hydrogel-based biosensors were evaluated in terms of stability and selectivity, and were used for the determination of total amine content in fish samples kept for 10 days in different conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.