Abstract

Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 1016 cm-2, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.