Abstract
AbstractRedox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS‐mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF‐82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS‐mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework‐82 (ZIF‐82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2O2 accumulation. These “disordered” cells show reduced resistance to ROS and are effectively killed by ferrous cysteine‐phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS‐mediated treatment of hypoxic tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.