Abstract

Polymeric nanoparticles with peroxidase-like enzyme mimetic activity were developed by incorporating catalytically active tellurium (Te) functionalities into cross-linked block copolymers. Bis(2-aminophenyl) ditelluride was used as a cross-linker to react with a diblock copolymer bearing pendent activated ester groups to generate of core-cross-linked nanoparticles (DiTe-NP) containing diaryl ditelluride bonds. DiTe-NP nanoparticles exhibit dual redox-responsiveness inherited from the sensitivity of ditelluride to both oxidants and reductants. When DiTe-NP nanoparticles were treated with H2O2, the oxidation of the ditellurides triggered the cleavage of Te-Te bonds to form Te(IV)-associated species. The oxidation-responsiveness endows DiTe-NP nanoparticles with haloperoxidase (HPO)-mimic activity. With NaBr and hydrogen peroxide, they catalyzed the oxidative bromination of phenol red, bromolactonization of 4-pentenoic acid, and bromination of 1,3,5-trimethoxybenzene due to the in-situ generation of hypobromous acid (HOBr) for halogenations. These ditelluride-containing nanoparticles also exhibited glutathione peroxidase (GPx)-like activity and accelerated the reduction of hydroperoxide by a thiol substrate. The cleavage of ditelluride bonds by a thiol substrate leads to the formation of key intermediates in the catalytic cycle of DiTe-NP nanoparticles. DiTe-NP nanoparticles showed enhanced activity for the reduction of hydrophobic cumene peroxide by 4-nitrothiophenol. These dual redox-responsive ditelluride-containing nanoparticles are promising candidates as peroxidase mimetics to apply as catalysts for green halogenation reactions and decompositions of toxic peroxides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call