Abstract

The toxicity assessment of transformation products (TPs) formed in oxidative water treatment is crucial but challenging because of their low concentration, structural diversity, and mixture complexity. Here, this study developed a novel redox-directed approach for identification of toxic TPs without the individual toxicity and concentration information. This approach based on sodium borohydride reduction comprised an integrated process of toxicological evaluation, fluorescence excitation-emission matrix characterization, high-resolution mass spectrometry detection, followed by ecological toxicity assessment of identified TPs. The redox-directed identification of primary causative toxicants was experimentally tested for the increased nonspecific toxicity observations in the ozonated effluents of model aromatics. Reduction reaction caused a remarkable decrease in toxicity and increase in fluorescence intensity, obtaining a good linear relation between them. More than ten monomeric or dimeric p-benzoquinone (p-BQ) TPs were identified in the ozonated effluents. The occurrence of the p-BQ TPs was further verified through parallel sodium sulfite reduction and actual wastewater ozonation experiments. In vitro bioassays of luminescent bacteria, as well as in silico genotoxicity and cytotoxicity predictions, indicate that the toxicity of p-BQ TPs is significantly higher than that of their precursors and other TPs. These together demonstrated that the identified p-BQ TPs are primary toxicity contributors. The redox-directed approach facilitated the revelation of primary toxicity contribution, illustrating emerging p-BQs are a concern for aquatic ecosystem safety in the oxidative treatment of aromatics-contaminated wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call