Abstract

The iron response regulator (Irr) protein from Bradyrhizobium japonicum mediates iron-dependent regulation of heme biosynthesis. Irr degrades in response to heme availability through a process that involves the binding of heme to Cys-29 in the heme regulatory motif (HRM) in the presence of molecular oxygen. In this work, we assessed the dynamics of one-electron reduction of heme-bound Irr by monitoring the formation of transient intermediates by pulse radiolysis. Hydrated electrons generated by pulse radiolysis reduced heme iron-bound Irr, facilitating the binding of molecular oxygen to the heme iron in Irr through an initial intermediate with an absorption maximum at 420 nm. This initial intermediate was converted to a secondary intermediate with an absorption maximum at 425 nm, with a first-order rate constant of 1.0 × 10(4) s(-1). The Cys-29 → Ala (C29A) mutant of Irr, on the other hand, did not undergo the secondary phase, implying that ligand exchange of Cys-29 for another ligand takes place during the process. Spectral changes during the reduction of the heme-bound Irr revealed that binding of CO to ferrous heme consisted of two phases with kon values of 1.3 × 10(5) and 2.5 × 10(4) M(-1) s(-1), a finding consistent with the presence of two distinct hemes in Irr. In aerobic solutions, by contrast, oxidation of the ferrous heme to the ferric form was found to be a two-phase process. The C29A mutant was similarly oxidized, but this occurred as a single-phase process. We speculate that a reactive oxygen species essential for degradation of the protein is generated during the oxidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.