Abstract

Simultaneous recordings of chemoreceptor discharge and redox state of cytochromes have been carried out on the rat carotid body in vitro under the influence of carbon monoxide (CO) in order to identify the primary oxygen sensor protein controlling transmitter release and electrical activity. CO excites in a photolabile manner chemoreceptor discharge under normoxic conditions and inhibits under hypoxic conditions probably by binding to heme proteins. We hypothesize that type I cells and adjacent nerve endings of the carotid body tissue have a different apparatus with oxygen sensing heme proteins to cooperate for the generation of peripheral chemoreceptor response. Transmitter release from type I cells might be established in a redox dependent manner whereas membrane potential of nerve endings might be controlled by a heme coupled to ion channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call