Abstract

Oxygen and oxidants enhance the sensitivity of cells to radiation. To understand this effect at the mechanistic level, the redox dependences for the reactivity of weakly reducing alpha-monoalkoxyalkyl radicals of 1,4-dioxane and tetrahydrofuran with a series of oxidants, for example, quinones, viologens, and nitro-arenes, with one-electron reduction potentials E71 values ranging from -80 to -640 mV, have been determined using the technique of pulse radiolysis. The second-order rate constants for these reactions with the alpha-monoalkoxyalkyl radicals of 1,4-dioxane and tetrahydrofuran are in the range (0.03-1.5) x 109 and (1.0-6.6) x 109 dm3 mol(-1) s(-1), respectively. The reactions of the alpha-alkoxyalkyl radicals of 1,4-dioxane with quinones and viologens involve an outer-sphere electron transfer, in contrast to a reaction with the nitro-arenes to give adducts. The resulting long-lived nitroaromatic adduct radicals were found to react with the reductant, TMPD, probably leading to the formation of hydroxylamine-type products. In cells, adducts formed on reaction of deoxyribose sugar radical with oxidants and subsequent reactions with reductants may contribute to the mechanisms involved in radiosensitization by oxygen and those oxidants that interact through adduct formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.