Abstract

The present-day nitrogen isotopic compositions of Earth's surficial (15N-enriched) and deep reservoirs (15N-depleted) differ significantly. This distribution can neither be explained by modern mantle degassing nor recycling via subduction zones. As the effect of planetary differentiation on the behavior of N isotopes is poorly understood, we experimentally determined N-isotopic fractionations during metal-silicate partitioning (analogous to planetary core formation) over a large range of oxygen fugacities (ΔIW -3.1 < logfO2 < ΔIW -0.5, where ΔIW is the logarithmic difference between experimental oxygen fugacity [fO2] conditions and that imposed by the coexistence of iron and wüstite) at 1 GPa and 1,400 °C. We developed an in situ analytical method to measure the N-elemental and -isotopic compositions of experimental run products composed of Fe-C-N metal alloys and basaltic melts. Our results show substantial N-isotopic fractionations between metal alloys and silicate glasses, i.e., from -257 ± 22‰ to -49 ± 1‰ over 3 log units of fO2 These large fractionations under reduced conditions can be explained by the large difference between N bonding in metal alloys (Fe-N) and in silicate glasses (as molecular N2 and NH complexes). We show that the δ15N value of the silicate mantle could have increased by ∼20‰ during core formation due to N segregation into the core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.