Abstract
Rotational motions of ferrocene-based carousels have been achieved by electron transfer centered on π-dimerizable 4,4'-bipyridinium substituents introduced on both cyclopentadienyl rings through covalent linkers of different size, geometry, and flexibility. Detailed spectroscopic, electrochemical, and theoretical analyses demonstrate that rigid and fully conjugated linkers allow the quantitative formation of intramolecular π-dimers resulting from optimized orbital overlaps within the HOMO of the electrochemically generated bis-radical species. The tetra-cationic "charge-repelled" conformers, the self-assembled π-dimers, and their electron triggered interconversions have been investigated by UV-vis, NMR, and ESR spectroscopy, electrochemistry, X-ray diffraction analysis, and theoretical calculations. These studies support the conclusion that the rotation of both cyclopentadienyl rings in ferrocene can be controlled electrochemically using noncovalent reversible interactions arising from π-radical coupling processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.