Abstract
Two-component regulatory systems that respond to changes in redox potential have recently been discovered in bacteria. 'Redox sensors' are defined as electron carriers which initiate control of gene expression upon oxidation or reduction. 'Redox response regulators' are defined as DNA-binding proteins which modify gene expression as a result of the action of redox sensors. Redox sensors and redox response regulators may comprise a mechanism for feedback control of redox potential in photosynthetic electron transport chains, thereby protecting plants, algae and photosynthetic bacteria from damage caused by electrochemistry operating on inappropriate electron donors and acceptors. Chloroplast redox sensors and redox response regulators, themselves encoded in the nucleus, may place chloroplast gene expression under redox regulatory control. This may account for the persistence, in evolution, of chloroplast genomes, and for the constancy of the sub-set of chloroplast proteins encoded and synthesised in situ. These and other predictions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.