Abstract

The alcoholic fermentation of organic carbon sources by Saccharomyces cerevisiae produces many by-products, with the most abundant originating from central carbon metabolism. The production of these metabolites involves redox reactions and largely depends on the maintenance of redox homeostasis. Despite the metabolic pathways being mostly conserved across strains of S. cerevisiae, their production of various amounts of metabolic products suggests that their intracellular concentration of redox cofactors and/or redox balance differ. This study explored the redox status dynamics and NAD(H) and NADP(H) cofactor ratios throughout alcoholic fermentation in four S. cerevisiae strains that exhibit different carbon metabolic fluxes. This study focussed on the molecular end-products of fermentation, redox cofactor ratios and the impact thereof on redox homeostasis. Strain-dependent differences were identified in the redox cofactor levels, with NADP(H) ratios and levels remaining stable while NAD(H) levels decreased drastically as the fermentation progressed. Changes in the NAD+/NADH ratio were also observed. Total levels of NAD(H) decreased drastically as the fermentation progressed despite the cells remaining viable until the end of fermentation. NAD+ was found to be favoured initially while NADH was favoured towards the end of the fermentation. The change in the NAD+/NADH redox cofactor ratio during fermentation was linked with the production of end-products. The findings in this study could steer further research in the selection of S. cerevisiae wine strains for desirable aroma contributions based on their intracellular redox balance management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call