Abstract

AbstractHydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen‐ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO3) electrode with high Coulombic efficiency and stability. The as‐obtained electrode exhibits ultrafast hydrogen‐ion storage properties with a specific capacity of 88 mA hg−1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO3 electrode in the hydrogen‐ion cell was investigated in detail. The results reveal a conversion reaction of the MoO3 electrode into H0.88MoO3 during the first hydrogen‐ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H0.88MoO3 and H0.12MoO3 during the following cycles. This study reveals new opportunities for the development of high‐power energy storage devices with lightweight elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.