Abstract

In aqueous Zn-ion batteries, the intercalation chemistry often foil attempts at the realization of high energy density. Unlocking the full potential of zinc-sulfur redox chemistry requires the manipulation of the feedbacks between kinetic response and the cathode's composition. The cell degradation mechanism also should be tracked simultaneously. Herein, we design a high-energy Zn-S system where the high-capacity cathode was fabricated by in situ interfacial polymerization of Fe(CN)64--doped polyaniline within the sulfur nanoparticle. Compared with sulfur, the FeII/III(CN)64/3- redox mediators exhibit substantially faster cation (de)insertion kinetics. The higher cathodic potential (FeII(CN)64-/FeIII(CN)63- ∼ 0.8 V vs S/S2- ∼ 0.4 V) spontaneously catalyzes the full reduction of sulfur during battery discharge (S8 + Zn2FeII(CN)6 ↔ ZnS + Zn1.5FeIII(CN)6, ΔG = -24.7 kJ mol-1). The open iron redox species render a lower energy barrier to ZnS activation during the reverse charging process, and the facile Zn2+ intercalative transport facilitates highly reversible conversion between S and ZnS. The yolk-shell structured cathode with 70 wt % sulfur delivers a reversible capacity of 1205 mAh g-1 with a flat operation voltage of 0.58 V, a fade rate over 200 cycles of 0.23%/cycle, and an energy density of 720 Wh kgsulfur-1. A range of ex situ investigations reveal the degradation nature of Zn-S cells: aggregation of inactive ZnS nanocrystals rather than the depletion of Zn anode. Impressively, the flexible solid-state Zn battery employing the composite cathode was assembled, realizing an energy density of 375 Wh kgsulfur-1. The proposed redox electrocatalysis effect provides reliable insights into the tunable Zn-S chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call