Abstract

AbstractRedox behaviour of Tc(VII)/Tc(IV) was investigated in 0.1 M NaCl solutions containing different reducing agents in the pH range 2 to 13 at 22 ºC under inert Ar atmosphere. In several samples, the 1 × 105 mol/dm3(M) initially added TcO4-was reduced to form a Tc(IV) oxide solid phase with low solubility. The observed Tc redox transformation processes are systematized according toEh-pH conditions in solution, indicating that a borderline for the reduction of Tc(VII) to Tc(IV),TcO4-+ 3e-+ 4H+⇔TcO2·xH2O(coll, hyd) + (2-x)H2Oexists, independent of the reducing chemical system. This experimentally derived borderline is about 100 mV lower than the equilibrium line calculated from the reported standard redox potential of TcO2· 1.6H2O(s). This behaviour can be related to the existence of more soluble solid phase modifications,i.e.nanoparticulate Tc(IV) oxide species (TcO2·xH2O(coll, hyd)). The reaction kinetics likewise correlate to the redox potential measured in solution. Slow reduction of Tc(VII) to Tc(IV) was observed when the redox potential in the system was slightly below the above mentioned reduction borderline. Fast reduction was observed in the systems far below the borderline, but also in those systems containing Fe(II) solids, suggesting a specific surface mediated effect in the reduction process. EXAFS analysis on two magnetite samples indicate reduced Tc(IV) species which do not remain adsorbed at the reactive mineral surface and are incorporated in the magnetite structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.