Abstract

Thermodynamics and kinetics of hydroxide ion binding to iron tetraphenylporphyrin (TPPFe) at different redox states is investigated by electrochemistry and UV-vis spectroscopy. The reduction of initial TPPFe(III) drastically decreases the binding affinity of hydroxide ions. An activation-driving force correlation is revealed showing that the strongest the binding affinity, the largest the association rate constant and vice versa. Comparison with chloride ions shows that hydroxide ions are stronger ligands for iron tetraphenylporphyrin. However, kinetic data indicate that coordination and decoordination of chloride ions is intrinsically faster than coordination and decoordination of hydroxide ions. Finally, the consequence of hydroxide ion binding dynamics when TPPFe is used as a molecular catalyst for electrochemical reactions liberating hydroxides is discussed in the framework of self-modulation of catalytic processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call