Abstract
Reservoir computing (RC) is a machine learning framework suitable for processing time series data, and is a computationally inexpensive and fast learning model. A physical reservoir is a hardware implementation of RC using a physical system, which is expected to become the social infrastructure of a data society that needs to process vast amounts of information. Ion-gating reservoirs (IGR) are compact and suitable for integration with various physical reservoirs, but the prediction accuracy and operating speed of redox-IGRs using WO3 as the channel are not sufficient due to irreversible Li+ trapping in the WO3 matrix during operation. Here, in order to enhance the computation performance of redox-IGRs, we developed a redox-based IGR using a (104) oriented LiCoO2 thin film with high electronic and ionic conductivity as a trap-free channel material. The subject IGR utilizes resistance change that is due to a redox reaction (LiCoO2 ⟺ Li1−xCoO2 + xLi+ + xe−) with the insertion and desertion of Li+. The prediction error in the subject IGR was reduced by 72% and the operation speed was increased by 4 times compared to the previously reported WO3, which changes are due to the nonlinear and reversible electrical response of LiCoO2 and the high dimensionality enhanced by a newly developed physical masking technique. This study has demonstrated the possibility of developing high-performance IGRs by utilizing materials with stronger nonlinearity and by increasing output dimensionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.