Abstract
In this work, 3, 3'-dithiobis (propanoic dihydrazide) modified and aldehyde-modified hyaluronic acid were respectively synthesized as precursor solutions to form redox and pH dual-responsive injectable hydrogels through dynamic acylhydrazone and disulfide linkages without exogenous stimulus conditions. The reversible sol-gel transition behavior of hydrogels could be repeated multiple times by adjusting DTT/H2O2 or HCl/TEA. Interestingly, the hydrogels shrank gradually when pH decreased, which improved significantly the storage modulus up to 8.4 times at pH 2. Furthermore, the hydrogel presented acid-switchable shape-recovery characteristics of self-healing by a dynamic recombination of acylhydrazone bonds. Moreover, the osmotic driving force derived from inner and outer concentration difference also affected the characteristic. The controlled release of bovine serum albumin (BSA) encapsulated in this hydrogel could be achieved in vitro under simulated pH/redox intracellular and intercellular microenvironment. This hydrogel could also promote chondrocytes proliferation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.