Abstract
Albumin is the major contributor to colloid oncotic pressure and also serves as an important carrier protein of many endogenous and exogenous molecules throughout the body. In blood and extravascular fluids, albumin is susceptible to different oxidative modifications, especially thiol oxidation and carbonylation. Because of its metal-binding properties and the redox properties of its Cys34 thiol, albumin displays an important antioxidant activity. As albumin is the predominant protein in most body fluids, its Cys34 represents the largest fraction of free thiols within body fluids. Evidence that albumin oxidation takes place in vivo has been reported only recently. Different redox proteomic, mass spectrometric, and chromatographic techniques have shown albumin redox modifications in various human pathophysiological conditions. As a whole, most data here presented demonstrate that massive albumin oxidation occurs in vivo in different biological fluids and, to some extent, that this process is correlated to organ dysfunction. Recent reports suggest that the albumin redox state may serve as a global biomarker for the redox state in the body in various human diseases. However, further study is required to elucidate the exact relationship between albumin oxidation and pathology. In addition, it is unknown if some albumin oxidized forms may also have diagnostic uses. Application of specific redox proteomics techniques for the characterization of oxidized albumin forms in screening studies is required. A further challenge will be to analyze how these oxidative albumin modifications are related to real impact to the body.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.