Abstract
To investigate effects of redox-active functional groups on the coordination chemistry and electronic properties of N-heterocyclic carbenes (NHCs), we prepared a series of complexes comprising 1,3-diferrocenylimidazolylidene and -benzimidazolylidene (1 and 2, respectively), 1-ferrocenyl-3-methyl- and 1,3-diphenyl-5-ferrocenylbenzimidazolylidene (3 and 4, respectively), N,N′-diisobutyldiaminocarbene[3]ferrocenophane (FcDAC), and 1,3-dimesitylnaphthoquinoimidazolylidene (NqMes) ligands and coordinated [Ir(COD)Cl] (COD = 1,5-cyclooctadiene), [Ir(CO)2Cl], and [M(CO)5] (M = Cr, Mo, W) units. The coordination chemistry of the aforementioned NHCs was investigated by X-ray crystallography, and their electronic properties were studied by NMR and IR spectroscopy, as well as electrochemistry. No significant variation in νCO was observed among metal carbonyl complexes supported by 2−4 and FcDAC, indicating that the number (one vs two) of redox-active groups, the location (N atom vs backbone) of the redox-active group, and carbene ring identities (strained six-membered, nonaromatic vs five-membered, heteroaromatic) did not have a significant effect on ligand electron-donating ability. Because the shifts in νCO upon oxidation of 1−3 and FcDAC were similar in magnitude but opposite in sign to NqMes, we conclude that the enhancement or attenuation of ligand donating is primarily Coulombic in origin (i.e., due to the molecule acquiring a positive or negative charge).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.