Abstract

The redox properties of both metals and ligands in transition metal complexes offer unusual routes for new mechanisms of anticancer therapy. Metal complexes can introduce artificial reductive and oxidative stress into cancer cells, including behavior as photoactivatable agents and catalysts. Relatively inert metal complexes (“prodrugs”) can be activated by redox processes within cancer cells. Examples of pharmaceuticals activated by bioreduction include three PtIV and two RuIII compounds that have already entered clinical trials. More recently, novel CoIII, FeIII, PtIV, Ru(III/II), OsII, and IrIII complexes have been reported to exhibit redox‐mediated anticancer activity. Redox activation strategies can introduce new methods to increase cancer cell selectivity and combat drug resistance. Using combination therapy together with redox modulators to increase potency is also possible. This essay focuses on metal complexes that are activated in the reducing environment of cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.