Abstract

Metal-organic frameworks (MOFs) are considered as one of the most promising catalysts for oxygen evolution reaction (OER). However, only a few have introduced redox-active ligands into MOFs and explored their role in the OER process. In this work, we synthesized FeNi DHBQ/NF using the redox-active ligand 2,5-dihydroxy-1,4-benzoquinone (DHBQ), which exhibited excellent redox activity and required only 207 and 242 mV overpotentials to achieve current densities of 10 and 100 mA cm−2. Our research confirms that (i) the doping of Fe leads to the formation of Ni → O → Fe electron transfer channels in the MOFs and stronger electron transfer, attributed to the stronger d-π conjugation between the metal center and the ligand and reduced the d-orbital crystal field splitting energy of Fe3+; (ii) the rate determination step (RDS) in the OER process of the catalyst is the formation of O*, while Fe and redox-active ligands effectively regulate the adsorption energy of oxygen-containing intermediates, reducing the energy barrier of the RDS; (iii) the redox-active ligands can act as “electron reservoirs” in the electrochemical process, making Ni more readily oxidized to Ni3+ or even Ni4+ at low potentials, which is beneficial to the subsequent OER process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call