Abstract

To improve the catalytic activity of 3d transition metal catalysts, redox-active ligands are a promising tool. These ligands influence the oxidation state of the metal center as well as the ground spin-state and make the experimental determination of both properties challenging. Therefore, first-principles calculations, in particular employing density functional theory with a proper choice of exchange-correlation (xc) functional, are crucial. Common xc functionals were tested on a simple class of metal complexes: homoleptic, octahedral tris(diimine) iron(II) complexes. The spin-state energy splittings for most of these complexes showed the expected linear dependence on the amount of exact exchange included in the xc functionals. Even though varying redox-activity affects the electronic structure of the complexes considerably, the sensitivity of the spin-state energetics to the exact exchange admixture is surprisingly small. For iron(II) complexes with highly redox-active ligands and for a broad range of ligands in the reduced tris(diimine) iron(I) complexes, self-consistent field convergence to local minima was observed, which differ from the global minimum in the redox state of the ligand. This may also result in convergence to a molecular structure that corresponds to an energetically higher-lying local minimum. One criterion to detect such behavior is a change in the sign of the slope for the dependence of the spin-state energy splittings on the amount of exact exchange. We discuss possible protocols for dealing with such artifacts in cases in which a large number of calculations makes checking by hand unfeasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call