Abstract

Red mud samples were used to catalyse in-situ co-pyrolysis of pinewood and low-density polyethylene for the production of high-quality bio-oil. The sodium cation in the crude red-mud was exchanged with barium and calcium cations and further tested to explore their role in oil upgrading. The relationship between red-mud catalytic activity and its constituents was explored using synthetic sodalite. The red-mud catalysts exhibited a considerable aromatisation capacity compared to the thermal co-pyrolysis, as the selectivity towards monocyclic aromatic hydrocarbons increased from 12.7 to 19.6%, respectively. Long-chain molecules cracking was more significant in synthetic sodalite associated with their acidic active sites. The addition of barium and calcium cations to the red-mud largely improved oxygen elimination as a result of the enhanced catalyst basicity. In contrast, the aromatisation ability of red-mud significantly impeded by the large cation size (Ba2+ and Ca2+) due to the limited diffusion of pyrolysis vapours to the active sites. Ba-exchanged red-mud catalysts reduced the content of carboxylic acids in the bio-oil to 1.8 % while maintained a high yield of the organic fraction (34 %). Ca-exchanged red-mud catalysts produced the lowest fraction of oxygenated compounds (35.1 %); however, the organic phase yield was as low as 23.6 %. The modified red-mud catalysts reduced the fraction of oxygenated compounds from 69.9–35.1% during the biomass-plastic co-pyrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.