Abstract
The experimental limitations with optics observed in many microscopy and astronomy instruments result in detrimental effects for the imaging of objects. This can be generally described mathematically as a convolution of the real object image with the point spread function that characterizes the optical system. The popular Richardson-Lucy (RL) deconvolution algorithm is widely used for the inverse process of restoring the data without these optical aberrations, often a critical step in data processing of experimental data. Here we present the versatile RedLionfish python package, that was written to make the RL deconvolution of volumetric (3D) data easier to run, very fast (by exploiting GPU computing capabilities) and with automatic handling of hardware limitations for large datasets. It can be used programmatically in Python/numpy using conda or PyPi package managers, or with a graphical user interface as a napari plugin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.