Abstract
Controlling regioselectivity during difunctionalization of alkenes remains a significant challenge, particularly when the installation of both functional groups involves radical processes. In this aspect, methodologies to install trifluoromethane (−CF3) via difunctionalization have been explored, due to the importance of this moiety in the pharmaceutical sectors; however, these existing reports are limited, most of which affording only the corresponding β-trifluoromethylated products. The main reason for this limitation arises from the fact that −CF3 group served as an initiator in those reactions and predominantly preferred to be installed at the terminal (β) position of an alkene. On the contrary, functionalization of the −CF3 group at the internal (α) position of alkenes would provide valuable products, but a meticulous approach is necessary to win this regioselectivity switch. Intrigued by this challenge, we here develop an efficient and regioselective strategy where the −CF3 group is installed at the α-position of an alkene. Molecular complexity is achieved via the simultaneous insertion of a sulfonyl fragment (−SO2R) at the β-position. A precisely regulated sequence of radical generation using red light-mediated photocatalysis facilitates this regioselective switch from the terminal (β) position to the internal (α) position. Furthermore, this approach demonstrates broad substrate scope and industrial potential for the synthesis of pharmaceuticals under mild reaction conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.