Abstract

The addition of certain amounts of Mn in steel has long been known to retard the growth and coarsening of cementite during tempering, which can increase the tempering resistance of carbon steels. It is now well-established that the retarding effect is inherently correlated with the partitioning of Mn between ferrite(α) matrix and cementite(θ). According to the equilibrium thermodynamics, Mn would diffuse from α-Fe matrix to θ cementite after the initial stage of tempering until equilibrium is reached.However, the manner in which Mn diffuses from α-Fe matrix to θ cementite is unclear, which is key in understanding the mechanism in which the partitioning of Mn can retard the growth and coarsening of cementite. Therefore, the measurement of Mn content across the α-Fe/θ interface is of importance to achieve this goal. In this study, the redistribution characteristics of Mn between α-Fe matrix and θcementite after long-term aging at 370 or 400 °C with quenched–tempered or quenched samples of reactor pressure vessel model steel was investigated by atom probe tomography. Results show that Mn diffuses from the α-Fe matrix and enriches in the θ cementite under all heat treatment conditions. The concentration of Mn in cementite is the highest when the specimen is thermally aged directly after quenching. Moreover, Mn is not distributed uniformly within cementite after long-term aging at 400 °C for 35000 h. Instead, a Mnsegregated zone exists within cementite adjacent to theα-Fe/θinterface,with concentration increasing by aging temperature,which acts as a barrier to the coarsening of cementite by hindering the dissolution of small-sized cementite.The redistribution characteristics of Mn between the two phases is correlated with the difference of diffusivities in theα-Fe matrix andθcementite during thermal aging,and the diffusivity of Mn inθcementite is slower than that inα-Fe matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.