Abstract

Nanoporous silica is nowadays used in various fields of nano- and micro-materials research. The advantage of nanoporous material is that it can be filled with various hydrophilic and hydrophobic molecules, which are then delivered to the target cells and tissues. In the present study, we have studied the interaction of nanoporous silica with hydrophobic and photodynamically active molecule - hypericin. Hypericin was adsorbed on/in SBA-15 silica, which led to the disappearance of its fluorescence due to hypericin aggregate formation. However, it was observed here that hypericin can be easily redistributed from these particles towards proteins and lipids in serum and cells in vitro and in vivo. Moreover, the charged surface character of SBA-15 pores forced the creation of protein/lipid corona on particles. Such complex enabled monomerization of hypericin on the surface of particles presented by fluorescence in the corona and singlet oxygen production suitable for photodynamic therapy (PDT). The PDT efficacy achieved by introducing the new construct into the PDT protocol was comparable to the efficacy of hypericin PDT. In conclusion, this study demonstrates a promising approach for the delivery of hydrophobic photosensitizers to cancer cells by nanoporous silica using fluorescence techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.